|
路线栈欢迎您!
您需要 登录 才可以下载或查看,没有帐号?立即注册
x
坊间一直流传着一个传说~STM32的硬件I2C设计有BUG,最好不要用,用软件I2C比较靠谱。长久以来,为了不必要的麻烦,我也一直没有用过硬件I2C,主要是软件I2C也比较方便,基本上任意端口都可以用。
最近画了块板子,正好用到了I2C,就顺便来测试一下硬件I2C是不是真的像有些人说的不好用。
测试硬件:STM32F407VET6+AT24C64
测试软件:STM32CubeMX v6.1.1
HAL库:STM32CubeF4 Firmware Package V1.25.2
STM32CubeMX配置
使用STM32CubeMX配置很方便,时钟等基础配置不再详细介绍,直接看I2C配置如下:
这里的速度模式选择为标准模式,时钟为100K。要求高的可以选择Fast模式,400K时钟。
配置完成后生成代码。
编写代码
代码生成后,直接调用读写数据的函数即可:
HAL_I2C_Mem_Read
HAL_I2C_Mem_Write
函数参数可参考代码注释。
24CXX系列的EEPROM进行写操作时需要注意,跨页写入时,要有一定的延时,否则会写入不成功。不同容量的页大小也不一样。
另外,24C16以下容量的地址为8位,24C32以上容量的地址为16位,在调用读写函数时需要注意,选择I2C_MEMADD_SIZE_8BIT或者I2C_MEMADD_SIZE_16BIT。测试使用的是24C64,所以选择I2C_MEMADD_SIZE_16BIT。
为了方便操作,将读写函数再封装一层,将跨页写入的各种情况都考虑到,实现任意地址连续写入。程序如下:
- #include "at24c64.h"
- #include "i2c.h"
- #define AT24CXX_ADDR_READ 0xA1
- #define AT24CXX_ADDR_WRITE 0xA0
- #define PAGE_SIZE 32
- /**
- * @brief AT24C64任意地址连续读多个字节数据
- * @param addr —— 读数据的地址(0-65535)
- * @param dat —— 存放读出数据的地址
- * @retval 成功 —— HAL_OK
- */
- uint8_t At24cxx_Read_Amount_Byte(uint16_t addr, uint8_t* recv_buf, uint16_t size)
- {
- return HAL_I2C_Mem_Read(&hi2c2, AT24CXX_ADDR_READ, addr, I2C_MEMADD_SIZE_16BIT, recv_buf, size, 0xFFFFFFFF);
- }
- /**
- * @brief AT24C64任意地址连续写多个字节数据
- * @param addr —— 写数据的地址(0-65535)
- * @param dat —— 存放写入数据的地址
- * @retval 成功 —— HAL_OK
- */
- uint8_t At24cxx_Write_Amount_Byte(uint16_t addr, uint8_t* dat, uint16_t size)
- {
- uint8_t i = 0;
- uint16_t cnt = 0; //写入字节计数
- /* 对于起始地址,有两种情况,分别判断 */
- if(0 == addr % PAGE_SIZE )
- {
- /* 起始地址刚好是页开始地址 */
- /* 对于写入的字节数,有两种情况,分别判断 */
- if(size <= PAGE_SIZE)
- {
- //写入的字节数不大于一页,直接写入
- return HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, dat, size, 0xFFFFFFFF);
- }
- else
- {
- //写入的字节数大于一页,先将整页循环写入
- for(i = 0;i < size/PAGE_SIZE; i++)
- {
- HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, &dat[cnt], PAGE_SIZE, 0xFFFFFFFF);
- HAL_Delay(3);
- addr += PAGE_SIZE;
- cnt += PAGE_SIZE;
- }
- //将剩余的字节写入
- return HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, &dat[cnt], size - cnt, 0xFFFFFFFF);
- }
- }
- else
- {
- /* 起始地址偏离页开始地址 */
- /* 对于写入的字节数,有两种情况,分别判断 */
- if(size <= (PAGE_SIZE - addr%PAGE_SIZE))
- {
- /* 在该页可以写完 */
- return HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, dat, size, 0xFFFFFFFF);
- }
- else
- {
- /* 该页写不完 */
- //先将该页写完
- cnt += PAGE_SIZE - addr%PAGE_SIZE;
- HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, dat, cnt, 0xFFFFFFFF);
- addr += cnt;
- HAL_Delay(3);
- //循环写整页数据
- for(i = 0;i < (size - cnt)/PAGE_SIZE; i++)
- {
- HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, &dat[cnt], PAGE_SIZE, 0xFFFFFFFF);
- HAL_Delay(3);
- addr += PAGE_SIZE;
- cnt += PAGE_SIZE;
- }
- //将剩下的字节写入
- return HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, &dat[cnt], size - cnt, 0xFFFFFFFF);
- }
- }
- }
复制代码
测试结果
经过测试硬件I2C读写EEPROM正常。没有发现所谓的BUG,当然这只是M4内核的针对EEPROM一种器件的测试,对于其它内核(M3等)和其它I2C器件,还有待验证。
总结
硬件I2C使用起来比较简单,不需要自己去调节时序,但是只能使用固定的几个引脚。
软件模拟I2C可以使用任意引脚,针对不同的MCU,移植起来比较方便,但对于不同频率的MCU,时序调节比较麻烦。
两者各有其优缺点,需要根据实际需求去选择。
|
|