• 注册 / 登录
  • 切换到窄版
  • 查看: 3227|回复: 0

    搞硬件,好好做个规划,比埋头苦学强多了!

    [复制链接]

    676

    主题

    690

    帖子

    6808

    积分

    版主

    Rank: 7Rank: 7Rank: 7

    积分
    6808
    发表于 2022-4-7 10:48:15 | 显示全部楼层 |阅读模式

    路线栈欢迎您!

    您需要 登录 才可以下载或查看,没有帐号?立即注册

    x
    一、前言

    • 不懂硬件的人,会觉得硬件高深莫测,“为什么他改几个电阻、电容就调出来,我弄个半天没搞定?”,“噢,靠的是经验”,但是经验又是什么呢?
    • 不能形容,反正就是觉不明厉。
    • 就是这种崇拜心理,才能触发你的好奇心,去学下去,这也是成为工程师的首要条件,但这是远远不够,还需要一条可供参考的学习路线,再加上99%的汗水和1%的灵感才可以。
    • 硬件设计,可以说是包罗万象,它涉及到非常庞大的知识量,而且,一个电路错一点小地方,都有可能导致整个系统不能工作。
    • 所以,搞硬件的人思维要非常缜密才可以,而这种思维要靠后面的学习来培养出来的,而不是说还没入门,就否定了自己。
    • 今天我们来介绍一下硬件设计的学习路线。

    二、初级理论篇

    2.1 高等数学和线性代数。
    • 这里重点掌握微积分和矩阵,因为在后面的课程里面将会大量用到这两个东西,是基础中的基础。

    2.2大学物理。
    • 这里很多东西其实在高中有学到,重点掌握电阻、电容、电感的特性和电生磁、磁生电的原理,其中麦克斯‍韦方程组将会在射频、微波中有用到。

    2.3 电路分析基础。
    • 其实电路基础的理论并不难,但是有些抽象的东西,是暂时不能很好地理解,比如说受控源(其实就是三极管),所以学完模电还要再回过头来再看一遍。这里重点掌握戴维南定理,不然后面没法学。

    2.4 模拟电子技术。
    • 这是电子专业的核心基础课,至少学三遍,此外,学啃书是不行的,还得配合Multisim仿真软件才能学好(实践部分后面再介绍)。
    • 如果说电路基础高数当中的答案都是明确、唯一的,那么模电的答案将是不明确、多样化的,需要在实践中权衡取舍,一定要把以前的思维转变过来,不然后面没法学。
    • 这门课全部都是重点,但是学完它,除了抄书上的电路,你仍然什么都做不了,因为还需要其它方面的知识一起用才可以。
    • 这里不得不提一下器件特性这个概念,没有它将不能打开电路设计的大门,但是由于篇幅有限,在此不做讨论。

    2.5 数字电子技术。
    • 这门课相对于模电来说,要简单很多很多。
    • 它把三级管搭成各种门电路、触发器,以便于直接把数学知识运用起来,同时它也是FPGA的先修课,是硬件工程师向算法工程师(跟计算机的算法有很大区别)转变的基础。
    • 这门课全部都是重点,但是要真正掌握它,还是得学FPGA才可以。

    2.6 电力电子技术。
    • 这里讲到晶闸管IGBT和电力MOS管,都是用在强电领域的器件,是开关电源的先修课。
    • 可以说电源是硬件设计当中最关键的部分,一个电源设计得好不好,直接影响整个系统能否正常工作。其中整流、逆变、升压、降压电路,都是要重点掌握的。

    三、中级理论篇

    3.1 复变函数这门课跟高数的微积分一样,是一种数学工具。
    • 复数信号是物理不可实现的,但是为什么需要复数?
    • 诚然,正弦波包括余弦,下同)有振幅、频率和相位三要素,如何在一个图上面表示振幅与频率的关系或者相位与频率的关系(方便观察分析才需要这样弄)?
    • 这就需要用到复数了,其中i或者j(因为电流的符号是i,所以才换成j,以防混淆)表示的就是方向,对应着极坐标的向量。
    • 我们可以把复数转成模和辐角的形式,想象一下,模就是时钟的秒针,而辐角就是秒针转动的角度,秒针转一圈就是个圆,而把这个圆的各点按照出现的时间先后,重新描绘在直角坐标系,就是一个正弦波。
    • 这就意味着,用复数可以表示一个正弦波的三要素,振幅就是模(秒针的长短),相位就是秒针转动的角度,频率就是秒针转动的快慢。
    • 想一下,如果用实数来表示正弦波的三要素,是不是很麻烦?这里重点掌握留数保形映射。

    3.2 信号与系统。
    • 介绍如何利用数学建模去描述电路,就是这门课要研究的内容。什么是信号?
    • LED灯的亮灭、喇叭发出的声音、天线感应的电磁波等,有实际用途的信息载体(包括声、光、电、热等)都是信号。
    • 什么是系统?就是处理信息载体的东西(包括放大器、传动装置等)。
    • 系统是一种更为抽象的概念,可大可小,小到一个三极管,大到一个无线收发装置,这些都要根据实际需求来确定,不能一概而论。这门课都是重点。

    3.3 自动控制原理自控原理是信号与系统的姐妹学科。
    • 介绍如何用数学建模的方法去分析电路,主要分析电路的稳定性。其中,波特图、PID都是要重点掌握的。
    • 学懂这门课就可以用里面的知识去分析一些较为复杂的带运放的电路,这种电路用KCL和KVL是仍然很难解决。
    • 3.4 高频电子线路高频是模电的非线性部分。
    • 你会发现高频里面很多内容跟模电都差不多,也有放大器、振荡器功放,但是这些电路用在更高的频段,所以分析方法有所不同。
    • 模电的功底较为扎实的情况下,再学这门课,就不觉得难,因为它本身就是模电的扩展,而不是全新的领域。这门课都是重点,至少学三遍。

    3.5 单片机。
    • 现在已经很少不用CPU的硬件电路了,而单片机正是最简单的CPU,所以掌握单片机也是很有必要的。其中单片机的接口电路也是相当考验你的硬件功底的。

    3.6 电子测量技术。
    • 做硬件的经常要跟仪器打交道,学习测量技术,一方面让你更能熟练地使用仪器,另一方面还能让你做一些测量电路(配合单片机就可以运用在物联网领域)。
    • 这里会接触很多新器件,大多都是传感器,当然重点研究的还是电气特性。这门课并不难,关键要多做实验。

    四、高级理论篇

    4.1 信号完整性分析。
    • 可以说硬件工程师最大的敌人就是干扰,要解决这些干扰就得做好电磁兼容性设计,学好这门课,才可以画出性能更优的PCB。

    4.2 开关电源。
    • 学会设计电源电路,给自己的电路系统配上合适的电源,以及解决电源完整性问题,也是相当考验硬件工程师的模电功底。

    4.3 射频电路设计。
    • 随着科技的发展,电路的工作频率将会越来越高,频率升高会带来各种各样的难题,所以学会设计射频电路也是很有必要的。

    4.4 通信原理。
    • 掌握现代的通信技术,其中包括信息论基础和各种调制方式都会在各种通信电路当中有用到。

    4.5 集成电路原理与应用。
    • 可以说几乎每块电路板都会用到芯片,所以学习一下芯片的制造技术,将会让你的硬件水平大大提高。
    • 举个简单的案例,数字电位器里面的电阻就是用MOS管构成的有源电阻,一定要上电,它才体现出电阻的特性,如果只使用模电的知识将无法理解这一现象。

    五、总结

    • 如果你认为这么多书,怎么看都看不完。
    • 那是以一种静止、偏面的观点来分析问题了。其实上介绍那么多课,很多内容都是相通的。
    • 比如,数电里面的移位寄存器,就是单片机里面的串口收发器。模电里面的放大器、振荡器,到了高频、射频,照样讲到,只是分析方法有点不同而已。
    • 高频里面的AM、FM、PM,到了通信原理,照样讲到,此外,还提出了ASK、FSK、PSK这几种雷同而且更为简单的调制方式。
    • 电力电子技术里面的直流斩波电路,就是开关电源的内容,只是扩展了一些内容而已。
    • 提前做好职业规划,避免出现:硬件工程师的价值越来越低了?
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    小黑屋|路丝栈 ( 粤ICP备2021053448号 )

    GMT+8, 2024-12-22 18:11 , Processed in 0.043598 second(s), 18 queries .

    Powered by Discuz! X3.4

    Copyright © 2001-2021, Tencent Cloud.

    快速回复 返回顶部 返回列表